
Journal of Statistical Physics, Vol. 34, Nos. 3/4, 1984 

Analyticity of the Density of States and Replica 
Method for Random Schr6dinger Operators 
on a Lattice 
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We analyze the density of states and some aspects of the replica method for 
Anderson's tight binding model on a lattice of arbitrary dimension, with 
diagonal disorder. We give heuristic arguments for the conjectures that the 
classical value of the exponent u of the localization length is 1/2 and that the 
upper critical dimension, d~ ~ is bounded by 4 =< d~ ~ =< 6. 
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1. INTRODUCTION 

The Anderson tight binding model (0 describes a quantum mechanical 
particle moving in a random potential on the lattice 7/". The dynamics of 
such a particle is described by the Hamiltonian 

H = - A  + V acting on the Hilbert space/2(2 ") (1.I) 

where A is the finite difference Laplacian, and V is a real random potential 
belonging to the probability space 

= X (R, clX (V( j ) ) )  (1.2) 
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where d• is a probability measure prescribing the distribution of values 
V(j)  of the potential V a t j .  Throughout this paper it is assumed that dX is 
independent of j and that it is absolutely continuous with respect to 
Lebesgue measure, dV, with a smooth density. 

Since every V ~ ~ is self-adjoint on a dense domain D ( V )  in 12(71 ") 
and since A is bounded, H = H v is self-adjoint on D(V) .  

We shall decompose the Laplacian according to 

A = P - 2v~, where 
(1.3) 

( P f ) ( j )  = ~ f(/) ,  i , j  E ~  
l i - j l  = 1 

Anderson's model is studied in connection with the theory of conduc- 
tivity in media with random impurities. Roughly speaking, conducting 
states are associated with absolutely continuous spectrum and extended 
(plane-wave type) eigenfunctions of H v, while insulating, or nonconduct- 
ing, states are supposed to be associated with point spectrum of H v -  
typically with exponentially decaying eigenfunctions. 

It is well known that spectral properties of H v are true with probability 
zero or one, with respect to dX (V)  :- ]"[jd?~ (V(j)), (2'3~ The reason for this 
fact is that the group of translations (Tj : j  E Z"}, ( T j f ) ( i ) : - - f ( i -  j), acts 
ergodically on ~ and that H v and H~v  are unitarily equivalent. Using 
these ideas it is easy to show, for example, that 

spec H v = spec( - A) + supp ?~ 

for almost all V ~ ~.(2) 
Thus the primary questions about H v concern the density of states of 

Hv,  the nature of its spectrum and transport properties. In one dimension, 
specH v is known to be pure point, with exponentially localized eigen- 
states. (2'3) In higher dimensions (v >/2) the same type of spectrum is 
expected in the presence of high disorder, e.g., 

[ Y "kl/2 [ Y dX(V)=L -fg ) exp[- -f V'2]dg (1.4) 

with 0 < "y << 1, and near the edges of the spectrum. For mathematical 
results in this direction see Ref. 4. 

For weak disorder, 7 >> 1, in three dimensions, it has been conjectured 
by Anderson (1) that there is an interval of (absolutely) continuous spectrum 
away from the edges of specH v, outside of which pure point spectrum 
appears. The energies, E c and Ec, at which the type of the spectrum 
changes, are called mobility edges. 
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In this paper we study the density of states, o(E), of H v as a function 
of the energy E E spec H v. We show that, for some class of distributions 
dX which are analytic in a strip of width > 4v around the real axis, o(E) is 
analytic in E, for tRee[  >> 1 and t ime[  small. Moreover, the decay of 
o(E), as E ~  + 0% is governed by the one of dX. In particular, for the 
Gaussian distribution defined in (1.4), o(E) is analytic for re[ >> 1, with 
Gaussian decay, as [E t ~ + oe. Moreover, for large disorder 0 < ~, << 1, we 
show that o(E) is analytic in E in a domain containing the real axis. 
Related results have been established by Edwards and Thouless. (1~ By a 
very simple, elegant analysis, Wegner has recently proven that for distribu- 
tions dX of the form 

,iX(V) = w( V) clV 

where w is positive and bounded on an interval I -- supp w, p(E) is positive 
and bounded on specH v = s p e c ( ' A ) +  i.(14) Thus, p(E) neither diverges 
nor vanishes at the mobility edges. Our results are compatible with the 
conjecture that p(E) is real analytic in E when w is analytic in a strip 
around the real axis. 

We now give a precise definition of the density of states: Let A be 
some finite sublattice of •", and Hv(A ) the Hamiltonian defined in (1.1), 
but with A replaced by A A, where A A is the finite difference Laplacian on 
I~(A) with suitable boundary conditions (Dirichlet or periodic) at 0A, the 
boundary of A. Let NA(E; V) denote the number of eigenvalues of Hv(A ) 
less than or equal to E. The properties of NA(E; V) are discussed in Ref. 3. 
For our purposes it suffices to recall the following elementary result. 

Proposit ion 1. With probability 1 with respect to dX 

lim 1 �9 V) =- n(E) A ~  - ~  NA(E' 

exists, is increasing in E and independent of V E ~ ,  almost surely. Fur- 
thermore, by the results in Ref. 14, 

n(e) = f <xle(e; V)Ix>aX(V) 
where x is an arbitrary site of g ~, and P(E; V) is the spectral projection 
onto the subspace of states of energy less than or equal to E. The density of 
states is defined as the measure 

0(e) = n(e)=  f<xle(e; v)l > a• (1.s) 

Proofs of Proposition 1 may be found, for example, in Refs. 5 and 6. 
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The resolvent of H v is defined, as usual, by 

R v ( E  + i~)-=-[,t V -  E - i ~ l - '  
and, formally, 

dP(E; V) = lim {Rv(E - i,) - nv(E + i ,)} dE (1.6) 
n4o 

In Section 2, we use the Neumann series expansion of R v in the off- 
diagonal part, P, of H v [see (1.3)] which converges when ~ is sufficiently 
large, in order to study the density of states, o(E), at large values of IE] or 
high disorder. See also Ref. 10. Our expansion is related to standard 
high-temperature expansions in statistical mechanics; (the role of tempera- 
ture is played, here, by a combination of y - i  and [El). Many versions of 
that expansion have been used before; see, e.g., Refs. 7-9. After taking the 
average of R v in dX; where dX(V) is analytic in a strip of width > 4v 
around the real axis in which it decays to 0--e.g., for dX given by 
(1.4)--our expansion converges even as 750, provided either ]Et >> 1 or 
there is large disorder, 0 < 7 << 1. This permits us to justify (1.6) for matrix 
elements integrated with dX and hence to establish decay--and analyticity 
properties of o(E) in E. 

The second topic of this paper is the replica method. For Gaussian dX, 
this method relates the expectation value of R v in dR to the N ~ 0 limit of 
the O(N)-invariant g[~[4 lattice field theory, with 

, = ( , , , . . .  ,~N),  gOC - - r - '  (1.V) 

and complex squared mass z = E + i~, ~ > 0 (see Section 3 for precise 
definitions): 

f dX(V)(x]Rv(z)[y ) 

= N-~01im 

• exp - ~- ( , ,  ( - A + V - z)d? 

= }moZV' f 

•247 ] (1.8) 

where 
N 

(O, AO)= ~ ~ e~(i)A(i,j)" O ~(J)" 
a =  1 i,j@2r~ 

N 

dO= 1-I I-I deP'~(J) 
a = l  j ~ Z  ~ 
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and 

f f I ] Z~ = d X ( V )  d,i~exp - ~ ( ~ , ( - 2 ~ +  V -  z)g,) (1.9) 

Mathematically, the right sides of (1.8) and (1.9) are first defined in a finite 
region A C 2[ ~, and the left-hand side of (1.8) is then obtained by taking the 
limit A 7 7/~. 

The technique of calculating quantities, like f d X ( V ) ( x [ R v ( z ) ] y ) ,  as 
limits of Euclidean Green's functions of N-component scalar field theories, 
as N ~ 0 ,  is known as the replica method; (N = # of replicas). It is 
frequently used in the study of disordered systems; see, e.g., Refs. 1 and 11. 
However, its range of validity appears to be limited, so that a mathemati- 
cally rigorous study of that method seems desirable. We prove that the 
replica method is applicable in a calculation of the density of states-- 
among other quantities--of random Schr6dinger operators on a lattice, for 
large [E[ or large disorder, i.e., in the parameter region where localized 
states are expected. 

The technique we shall use to analyze the replica method is a combina- 
tion of random walk expansions (12) of Ru(z  ) and d e t ( - A  + V - z )  -~/2, 
obtained from Neumann expansions in P, with a standard high-temper- 
ature expansion for systems with long-range interactions. (7'9) A similar 
analysis in the context of polymer physics is given in Ref. 13. In the course 
of our analysis we explicitly relate the expectation value of the resolvent R v 
in dX to the N ~ 0  limit of a two-point function of the O(N)- invar iant  
gig,[4 model with negative coupling constant and complex mass, as indi- 
cated in (1.8). 

In Section 4 we propose and discuss some conjectures concerning the 
critical dimension of the Anderson model and the exponent u of the 
localization length. 

The material presented in Sections 2 and 3 of this paper was worked 
out between summer 1980 and winter 1981, but, for various reasons, was 
not written up as a paper. Large portions of it are of an expository nature! 
S. A. Molchanov has informed us that he has independently found related 
results. 

. THE RANDOM WALK EXPANSION 

We start by deriving a random walk expansion for the matrix elements 
of the resolvent 

<x[Rv(z)[y>, x, y ~ ~", Imz v ~ 0 

Using (I.1) and (1.3) we may write H v as 

H v -  z = D(z )  - P, where 

D(z )  = (2v - z){ + V 
(2.1) 
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We expand in a Neumann series in P: Hence 

Rv(z) = (Z~(z) - e ) - l =  E D(z)-'(eD(z)-~)" (2.2) 
n = 0  

Writing out each term on the right-hand side of (2.2) as a sum of products 
of matrix elements we obtain 

< x l R v ( z ) l y >  = ~ I-I Dj(z) -n'('~) (2.3) 
~o : x - - ? y  j E 7 7 ~  

where co is a random walk of nearest-neighbor steps starting at x and 
ending at y, hi(co) is the total number of visits of co at the site j ~ 2~ ~, and 

Dj(z )  = 2v - z + V ( j )  

The expansions (2.2), (2.3) converge absolutely if 

j j e [ ( 2 v -  z){ + v] - l j J  < 1 

It is immediate that tlPH = 2v, and 

1l[(2v - z)~ + v] - l l l  • ]Imzl -~ 

Thus, absolute convergence is assured if 

IImzl > 2~ (2.4) 

Next, we integrate both sides of (2.3), term by term, with dX. This yields 

f<xlRv(z)ly>d• 
1 )"J('~) (2.5) = E II ~dX(V) 2 v - z +  v 

oa : x---~y j E T / ~ - ,  

We propose to analytically continue each  term on the right-hand side of 
(2.5) in z beyond the domain specified in (2.4) and prove absolute conver- 
gence of the analytically continued expansion. This yields an analytic 
continuation of the left-hand side of (2.5) in z. Since the density of states is 
the discontinuity of f(x[Rv(z)lx)dX(V) along the real axis [see Proposition 
1, (1.5), and (1.6)] the continued expansion will permit us to analyze o(E), 
as well. In order to implement this program we make the following 
assumptions on dX (we do not aim at maximal generality): 

(1) dX(V) = w(V)dV (2.6) 

where 

(2) wisanalyticinVinthestrip{V:JlmVl<2(v+e)} (2.7) 
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for some arbitrarily small, but positive e, and 

(3) p(E) = sup Iw(V)l---> 0 
IV-El<2v+c 

as E---> + ~ (E real)~ 
We now summarize our main results. 

(2.8) 

Theorem 2.1. Let d)~ satisfy (2.6)-(2.8), and let z = E + iT. Then (1) 
for I~1 v~ 0, the expansion (2.5) converges absolutely, provided IE I is large 
enough; (2) the density of states, p(E), is real analytic in E, for ]Re E I large 
enough, and 

0 < p(E) -<< const, p ( E  - 2p) 

for all real E. 

Corol lary 2.2. Let d~ 
If 171 > 0 and I Ef >> 1 then 
p(E) is an analytic function 

Moreover, for real E, 

be the Gaussian distribution defined in (1.4). 
the expansion (2.5) converges uniformly, and 
of E, for IEI >> 1 and limE[ < (1/~-) [ReE[ .  

0 < o(E) < const, exp[ - y ( E -  OE) 2] 

where o E = ~ if E < 0, o E = 4p + E if E > 0, and c is an arbitrarily small, 
positive number; (c = 0, if v/> 3). 

Theorem 2.3. Let d~ be the Gaussian given by (1.4). If 0 < y << 1 
(i.e., for high disorder) the expansion (2.5) converges uniformly in z = E + 
iT, ]71 > 0. The left side of '(2.5) has an analytic continuation in z across the 
cut to a uniform neighborhood of the real axis. The density of states, o(E), 
is a real analytic function of E. 

Remark. One also expects p(E) to be analytic when d)t is the 
Gaussian with ~, >> 1 and I EI < const. However, our methods do not apply 
in this region. 

Proof of Theorem 2.1. In order tO establish convergence of the 
expansion (2.5) for z in a large domain we must estimate the functions 

I~(z, d~) =--fd~( V)(2e - z + v)--r (2.9) 

Let z = E + i7/, E real. We define 

F I={V:IImV[=O,ReV<< E - 2 v - l )  

and, for rt < 0 

Ff = ( V : I V - E + 2 v  I = / , 0 < a r g ( V - E + 2 v ) < r r }  
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while, for ~/> 0, 

F f  { V : I V - E + 2 v  I = l , - ~ r < a r g ( v - E + 2 v ) < 0 )  

Finally, 

F3=  ( V : [ I m V I = O ,  ReV>~ E - 2 v + l }  

F -+ = F 1 U F 2 U F 3 
(2.10) 

V 

lw 1D , lb 

F 1 E - 2 v  + i~l F 3  

Let d)~(V)= w ( V ) d V ,  where w is analytic in a neighborhood of the 
domain bounded by the real axis and F -+. We then have 

Ir(z,d~k ) =~_+(2p - z + v ) - r w ( v ) d V  

for z =  E + i~l, ~l ~ O. 
Since, for I~/I v ~ 0, 

f r l u r 3 d ) ~ ( V ) ( Z v -  z + V)  -r  < l-rf dX(V)= l - r  

,.,v(- d)~(V)(2v - z + V)  - r  < ,rrl -r+'  max [w(V)l 
v~r~  

we have 

(2,11) 

(2.12) 

[Ir(z, dX)[ <~ l--r[1 + ul max ]w(V)l 1 (2.13) 
k VEF~ A 

If w satisfies (2.6)-(2.8) we may choose 

/ = 2 v + E  
and obtain 

I I ~ ( z , d ~ . ) j < ( 2 v + e ) - r [ l + ~ r ( 2 v + e ) p ( E - 2 v ) ]  (2.14) 

From (2.14) and (2.8) it now follows that, given 0 ~< 8 < r there exists some 
finite constant E~ such that, for I E[ >/ E,,  

II,(z, dX)l <<. (2v + 6) - r  (2.15) 
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Inserting (2.15) into (2.5) we obtain 

f d X (  Vl(xrRv(z)ly ) 

E 17 fI.~(~i(z, aX)l 
oa : x - - ) y  j ~ Z ~  

: x ~ y  j ~ Z ~  

= (--A + 6 ) - ' ( x  - y )  (2.16) 
for z = E + i~, [~1[ v a 0, 0 < 6 < e and [El > E 8. The right-hand side of 
(2.16) decays exponentially in Ix - y [ .  This completes the proof of part (1) 
of Theorem 2.1. 

We now turn to the proof of part (2). By Proposition 1, (1.5) and (1.6), 

p ( E )  = ~ ; d X ( V ) [ ( x l R v ( E  - in) Ix)  - ( x l R v ( e  + i~)[x)] (2.17) 

For z = E - i7/, [~[ > 2g, (2.3) yields 

<xlRv(Z)lx> - <XIRv(~)Ix> 

= { nE  -z + nI2 -, + 
~o: x j j 

(2.18) 
For each random walk o~, letjl = jl(w) . . . . .  jM -----JM(,~(~ be the set of sites 
visited by o~, ordered in an arbitrary way. We now apply the identity 

M M M - I  k M 

II a~ +-  II a :=  E II ~:(~;+,-a,-+,) II a: 
a = l  a ~ l  k = O  a = l  a = k + 2  

with a + = [2v - z + g(s ('~), a~- = a ~ ,  to the right-hand side of (2.18). 
After integration with dX this yields 

f dX(V){ <xlRv(z)lx ) - (xIRv(~)lx)} 

M(to)--  1 k 

= Y E II ~,,o(~(z, dX) 
o~:x--->x k = 0  a = l  

M(~) 
X(I%+,(,o)(z, d2t)- I,,,,+,(,o)(~,d)t)) II I,,(,o)(z,d)t) (2.19) 

a = k + 2  ~ 

We now establish the following properties of lr(Z, d~), requiring (2.6)-(2.8): 
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(a) 
domain 

and 

Ir(E +_ i~,dX), ~/> 0, has an analytic continuation in E to the 

{ E:ImEImE < >2v-2v-c}+ e (2.20) 

[Ir(E + ivl, d~)[ 

<(2~ + r  dist(E + i~,I '~)- '~r(2e + c) max Iw(V)] (2.21) 
v~ry  

(b) Dr(E,d~ ) --lim { I , ( E -  i~,dX) - I~(E + i~l, dX)) (2.22) 
%0 

has an analytic continuation in E to the strip 

( E :  l imE I < 2r + c) (2.23) 

and 

[D,(E, dX)I < dist(E, Y2)-'ZTr(2p + ~) max [w(V)[ (2.24) 
VEF2 " 

w h e r e  F 2 = F~- U F 2 . 

Proof of (a). For E real and ~/> 0 it follows from (2.6), (2.7) that 

Ir(E - i'o, dh) = ; _ d ~ ( V ) ( 2 u  - E + i~1 + V) -~ (2.25) 

where F -  is defined in (2.11), and we set I --- 2e + e. The right side of (2.25) 
obviously has an analytic continuation in E to the domain defined in 
(2.20). The bounds on ] l r (E-  i71, d~)[ on that domain are proven as in 
(2.12), (2.13). The proof of (a) for Ir(E + i~,d~) is similar. 

In order to prove (b), we note that 

lim f dX(V)( (2v  - E + i~ + V )  - r  - (2v - E - i~ + V) -~} = 0 
750 JYI U F3 

where Y1, F3 are as in (2.10). Hence 

D,(E, dX) =~r2dX(V)(2v - E + V) - r  (2.26) 

from which (b) follows immediately. 
Next, we use (a) and (b) to prove absolute convergence of the expan- 

sion (2.19) for z in a suitable domain in the complex plane: If z = E - i~7, 
> 0 and limE] < ~/2 then one can use (2.21) to establish absolute 

convergence of the right side of (2.19), provided ]ReEl is large enough; see 
(2.8). In particular,  

l i t (E+ iTt, dh)[ <(2~ + r  + ~r(Ze + c ) p ( R e E -  2~)] 

ID,(E, d3,)] <~ (2l, + c/2)--rz~r(2p + c )p (ReE - 2p) 
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if l imE I < e /2  and ~ > 0. Thus, by (2.19), 

lim(dX(n$0 J V ) { ( x I R v ( E  - i~l)[x) - ( X l R v ( E  + i* l )[x)}  

< ~, [c0](2v + 6)-J'42~r(2v + r  2v) 
: X ~ - ~ X  

< const, p ( R e E  - 2e) (2.27) 

where 8 is chosen to lie in (0,E/2), and ]ReE] is so large that 

(2v + e /2 ) -1 [  1 + rr(2v + e)p(Re E - 2v)] < (2v + 6 )-1 

Moreover, ]oa[ - 1 is the total number of jumps a walk ~0 makes. These 
estimates (along with Wegner's results (14)) complete the proof of part (2) of 
Theorem 2.1. �9 

We now turn to the proof of Corollary 2.2. The Gaussian distribution, 

dX(V) = w ( V ) d V  

w ( V )  = ( y /2~r)  l / 2 e x p [  - (y /2 )  V 2] 

satisfies properties (2.6), (2.7), and (2.8), for arbitrary values of e > 0. This 
proves the first part of Corollary 2.2. In claims (a) and (b) above, we choose 
F f  as indicated below: 

. ~ j  l=2u+r  

~]?~- 

x E - 2v - iT1, */>0 

Inserting the upper bound 

into estimates (2.21) and (2.24) we obtain convergence of the expansion 
(2.19), and hence the analyticity properties of p ( E )  claimed in Corollary 
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2.2, provided l imE[ < a lReE  [, a < 1, and [ReE I is large enough depend- 
ing on a. 

If E is kept real we obtain the upper bound on o(E). [] 

Proof of Theorem 2.3. If in (2.12), (2.13), (2.25), and (2.26) we 
choose 

1 = x7-1/2 

for some constant x > 0 (in which one optimizes subsequently), we obtain 

[Ir(Z, d~)l < ('~'/2/K)rll "~ const xe ~/2 ] (2.1Y) 

where z = E + i71, 171 > o, and 

IDr( E, dk)[ << const(q,l/z/ K)re ~/2 (2.24') 

uniformly in E ~ R. Similar estimates which are uniform in Re E hold 
when I Ira El < const. Thus, for 0 < 3' << 1, Theorem 2.3 follows. [] 

3. THE REPLICA METHOD 

3.1. Introductory Remarks 

As mentioned in the Introduction, the replica method is a means of 
calculating, e.g., 

fdx(v) x[Rv(Z)[y> 
and other quantities of interest, in terms of Green's functions of N- 
component scalar field theories in the limit where N tends to 0; see, e.g., 
Ref. 11 for a summary of that method. Here we propose to justify the 
replica method in the region where IE[ = IRezl is large or when there is 
large disorder, i.e., in the region where localized states are expected. 

The plan of this section is as follows: We first prove the first equation 
in (1.8), i.e., 

fdX(V)(xlRv(z)ly ) 

; ; [ /  ] = ~moiZff~ dX(V)  d ~ ( x ) ~ l ( y ) e x p  - -~(eO,(--A + V -  z)q~) 

(3.1) 
where z = E + i~/, ~1 > 0. The quotient on the right side of (3.1) must be 
understood as the thermodynamic limit of quotients in finite volume which 
are defined as follows: 
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Let A A be the finite difference Laplacian in a finite box A with some 
boundary conditions (e.g., periodic or Dirichlet) imposed at the boundary 
8A. Let 

N 
q~A = {~b(J))jea, dqJA = II I-I dqJ~(J) 

j E A  a ~ I  

and d~A(V) = 1-IjeAd~(V(j)). 
Finally, let A (q~) be some function depending on only finitely many 

q~(j)'s. We define the unnormalized expectation 

•  - i  A A Z)q)A) ] (3.2) + v- 

and 

ZN,  A = [ 1 ] N,A (3.3)  

The normalized expectation in finite volume is defined by 

Z - ] [ A  (q~)JN, A (3.4) <A (q~))/,h = N,6 

We propose to show that (A (q@)2v,A has an analytic interpolation in N valid 
in some neighborhood of [0, oo), for arbitrary A. Then we shall show that 
for sufficiently large ]Rez[ or high disorder and for N in some A- 
independent complex domain containing the origin N = 0, 

(A (~))N = lim (A('IJ))N,A (3.5) 
A ..-~ Z d 

exists and is analytic in N inside that domain. Subsequently we prove that 

lim i(eo ~(x)@ ~(y))u= f d~( V)<xlRv(z)ly) (3.6) 
N ~ O  

Finally, for 
Y d~(V) = (y/2~r)'/2exp[ - ~ V 2] dV 

we shall relate (A (~b)) N, N -- 1,2, 3 . . . . .  to a Green's function of the g[~]4 
theory, continued analytically in the mass (m 2= - z )  and the coupling 
constant (g  r . y - l ! )  

The methods used below are not restricted to quantities like fdX(V) 
(x[Rv(z)[y) or p(E), but can also be used to justify the replica method in 
calculations of expressions related to the conductivity or the diffusion 
coefficient which can be expressed in terms of integrals of the form 

E ax( f V)g(x, y, x', y')(xlRv(z)[y)(x'lRv(z)ly" ) (3.7) 
x~y~)cl~y ' 
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Such integrals require two sets of replicas, because there are two distinct 
"mass parameters," z and ~. Unfortunately, our methods do not permit us 
to analyze the behavior of integrals like (3.7) with z = E + iT, in the limit 
when ~/ tends to 0. For this reason we shall limit our discussion to the 
replica method for quantities related to o(E). 

3.2. Replicas in Finite Volume 

We now analyze the integrals on the right side of equations (3.2) and 
(3.3). If z = E + i~/, ~7 > 0, 

i ( ,~ , (-A* + v -  ~),a)] ZN,A= f dXA( v) f aq, Aexp--[-~ 

i -N/2 
= f dXA(V)det[ ~-~ ( -AA + V - z)l (3.8) 

and 

; ( * * , ( - a  ~ + v -  z),A)] • exp I - 

= - ifdxA(V)(- A* + v -  z)-:(x, y) 

[ i A A i - u / 2  •  ~ (  + V - z )  (3.9) 

Notice that, for Imz > 0 and finite A, all integrals in (3.8) and (3.9) exist. 
In order to analyze the properties of these integrals, we expand (-2XA+ 
V - z )  -1 and det[(i /2~r)(-Aa + V - z ) ]  -N/2 in random walks, as in Sec- 
tion 2 and Ref. 12. Thus, for periodic or Dirchlet boundary conditions 
at OA, 

(-A*+ v-z)-'(x,y)= E 1I nj(z) - ' ~  (3.to) 
oa : x - + y  j ~ A  

With Dj(z) = 2v - z + V(j); see (2.1)-(2.3). Moreover, 

[ i 5* I--N~2 det ~ ( -  + V - z )  

_-expE i 

= exp[ - 7 

N tr ln(1 - D - ip a) 1 • exp[ - -~- 



AnalyUcity and the Density of States 585 

where pA is the off-diagonal part of A A. Using the series expansion for the 
logarithm we obtain 

det[ i A ~(-~ + v-~)] -~/~  

= CN,A H nj(z)  -N/2 
j~A 

• ~ - 2  X I'~1- l-I n/z)  -"~ (3.11) 
jeA ~ :j~j jEA 

where 

where nj.(a) = y~o,~anj(co), and 

CN,A = (-- 2~i) (N/2)IA[, I~1 = ~ nj(~) 
jeA 

For finite A, the expansions (3.10) and (3.11) converge uniformly in V, 
provided Imz > 2v. Let f~ = {~ol, % . . . .  } be an ordered set of not neces- 
sarily distinct random loops, and let ]~21 denote the number of random 
loops in fa. Let Zo(f~ ) = (U/2)lalIL~alr If we expand the exponential 
on the right side of (3.11) and insert the result back into equations (3.8) and 
(3.9) we obtain 

II Dj(z) -[u/2+"j(a)l} (3.12) 
jeA 

2z0(a)(lal~)-' [~I(x)01(y)]N'A= CN'A o~ :~x-~y f~ 

• f d2ta(V) II  Dy(z) -[N/2+"/a)+"j(~)l) (3.13) 
yeA 

We observe that the integrals on the right side of (3.12) and (3.13) factorize. 
Recalling the definition (2.12) of the functions It(z, d)~) we obtain 

ZN,A---- CN,A~0(a)(laI!) -1 II IN/2+.,(a>(z, dX) (3.14) 
a yEA 

and 

We now define 

1 1 [~ (X)~ (y)]N,A = CN, A 2 2Zo(a)(lal~)-' 
~o : x~y  f~ 

X 1-I IN/2+n,<a)+nj(,o(Z, d2t) (3.15) 
j e A  

ZN,A IN/2(z,d~t) -]Alt '-17 -~ ~ N  A L'+N,A 

[ ( ' ) ]N,A = Iu/2(z,d)t)-laICrv,~[(')]N,A 
(3.16) 
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and 

W(a) = rI (IN/2+~(a~(z, dX)/IN/2(z, dX)) (3.17) 
j ~ A  

Dividing (3.14) and (3.15) by Ix/z(z, dX) lal, we obtain 

2N,a = 2 z0(a)(lai  ) - I  (3. t4') 

z0(a)(lal! )- w(a u (3.15') 

Our next task is to study the convergence of (3.14') and (3.15') 
uniformly in A. This is accomplished with the help of a cluster expansion. 
We use the polymer method described in Refs. 7, 9, and 13. First we note 
that a term on the right side of (3.14') or (3.15') indexed by a family 

= {wl . . . . .  ~Om}, m = 1,2, 3 . . . .  , of random loops 

does not depend on the ordering of {c01 . . . . .  ~0m}. Thus we may resum 
over families f~ which only differ in their ordering. The resulting expansions 
of ZN,A and [~I(x)~I(x)]N,A are indexed by "multi-indices", (13) i.e, func- 
tions from the class F of all random loops to N. In accordance with Ref. 13 
we shall call these multi-indices g-sets (for "generalized sets"), and we shall 
denote them again by f2. Given a g-set ~2 and a random loop ~0, let p(~2, ~0) 
be the total number of copies of ~ appearing in ~2. We set 

[ a ] ~ =  1-I p(a,~)~ (3.18) 
o ~ F  

We may now rewrite (3.14') and (3.15') in terms of sums over g-sets of 
random loops, replacing lal! by ff~]!. Next, we observe that each term 
indexed by some g-set in these new expansions factorizes in a product of 
terms labeled by connected g-sets 5 which are called "polymers" and denoted 
by ~2 c. For, if a I rq f~2 = 0 then 

W(a,  U a2) = w(a , )ve (a2) ,  z0(a 1 u a2) = z0(a~)z0(a2) (3.19) 

as follows from (3.17). Two polymers, g~, a~ are said to be compatible iff 
fl~ U a~ is not a polymer, i.e., not connecte& Otherwise they are said to be 
incompatible. If f~ is a g-set of random loops and o~ a random walk starting 
at x and ending at u such that ~2 U o~ is connected, then 

is called an x ~ u polymer. Let jacl, [ac]!, w(~  ~) be defined as above (with 

5 A g-set is connected if it consists of random loops Wl, . . . , ~%--not  necessarily dist inct--  
such that any point on @ can be joined to any point on o~j by a sequence of nearest-neighbor 
jumps  in U ~ =  lw~, for all i, j .  
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f ~ f ~ ) .  With each polymer f2 ~ we associate an activity, z(f~), defined by 

z(e c) = z0(ac)([ac]~ ) - lW(a9  (3.20) 

Clearly, all these notions are also defined for x ~ u polymers. The expan- 
sions (3.14'), (3.15') can now be rewritten as sums of products of activities 
associated with compatible polymers. Compatibility may be viewed as 
arising from a hard core exclusion between different polymers. We define 

0, if f~ and ~ are compatible 

g ( a ~ , ~ )  = - 1, otherwise 
(3.21) 

Then the expansions (3.14') and (3.15') take the form 

= 2 2 1I El+g(a ,a ,)l (3.22) 
r=O {[2~ . . . .  , f~} k = l  l < k < k ' < r  

and 

r = 0  {a T . . . . .  a,~} k =  1 

• II [1 + g(a~, a~,)l 1 (3.23) 
l < k < k ' < r  ) 

where (a~ . . . .  , a;} are unordered sets of polymers. In (3.23), one polymer, 
f~, is an x ~ u polymer. The factor 

I-I [ 1 + g(a~ ,  a~,)] 
l<~k<k '<r  

can be interpreted as the Boltzmann factor of r polymers indexed by the 
g-sets ~2~ . . . . .  f~ and interacting via hard core exclusion, with z (a  c) 
playing the role of a chemical activity of a~. It is possible to reduce the 
expansion (3.23) to an expansion of the form (3.22)(9'13): 

( ~ I ( x ) ~ I ( b / ) ) N , A =  d l o g ( / ~ N , a  "1- tE,pl(x)q,l(U)lNa}l,= o (3.24) 

The expression within ( �9 �9 �9 } is a modified partition function. 

3.3. Cluster Expansion and Thermodynamic Limit 

Here we use the polymer method, described in Refs. 7-9 and 15 to 
prove convergence. In order to control the logarithms of polymer expan- 
sions we require two basic properties (A and B below) of polymers. (943) We 
define the length l(~2c), of a polymer f~c by 

/(a c) = • I~l 
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If ~2 C is an x ~ u polymer, f~u = f~ u ~0, we set 

Z(a;u ) = L~[ + ~ L'o'l 
~0' E f~ 

Convergence is ensured if the following properties hold: 
Property A. Let a~) be a polymer of length l 0. The total number of 

polymers, a C, of length l which are incompatible with f~) is bounded by 
loK (, where K 1 is some constant (which turns out to be proportional to the 
dimension u of the lattice). 

Property B. The activity, z(f~), of each polymer a c is bounded by 
K~ (a0, where K 2 is a constant depending on u. 

The issue is now to verify Properties A and B for our case. Before we 
go into this, we recall the consequences of convergence of the cluster 
expansion, guaranteed by Properties A and B. 

Let X denote a g-set of polymers. If X contains an x ~ u polymer, ~2~,, 
we write X : x  ~ u. With each g-set X we associate a graph G(X) whose 
vertices are the polymers in X. Two vertices of G(X) are joined by a line iff 
the corresponding polymers are incompatible. The number of lines (pairs of 
incompatible polymers) in a graph, G, is denoted by L(G). Let ~(X, a ~) be 
the number of copies of polymer [2 ~ in a g-set X, 

[ X ] ! =  I I ~ ( x ,  a o !  

and 

II (a ) 

The result of the cluster expansion is summarized as follows: 

i . e m m a  3.1 (9,13) . W e  have 

1og27N, a = ~ 1 r (X)z(X ) (3.25) 
x 2T, + 

q l .  1. 1 x%?N,A = 2 - - e o r ( X ) z ( X )  (3.26) 
x:x . [ x ] !  

where all g-sets X only contain sites in A, and 

oT( x)= E (- l )  "G) (3.27) 
GcG(X) 

the sum ranging over all connected subgraphs G of G(X) containing all the 
vertices of G(X). 

Remark. The coefficients q, T(X) have a purely combinatorial char- 
acter. They vanish, unless G(X) is connected (i.e., X is connected). In Refs. 
8 and 9 the following upper bound on I~ T(X)] has been established. 
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Lemma 3.2. Under the assumption that Property A holds 

]OT(X)I < [X]?K~ (x) (3.28) 

where l(X) = ~ecp(X, ~2C)l(~C), and K 3 is a geometric constant depending 
on p. 

Remark. This result is usually presented in two portions: one first 
establishes a general estimate on the right-hand side of (3.27) and then 
proves an upper bound on that estimate, exploiting the lattice structure and 
Property A. We do not repeat the proofs of Lemmas 3.1 and 3.2. The 
reader may consult the clear presentations in Refs. 15 and 9, and for an 
application similar to the present one, Ref. 13. 

We now proceed to verify Properties A and B for our case. 
To verify Property A we use the construction described in Ref. 13. 

With each polymer ~2 c we associate a walk ~c which completely follows all 
the walks in ~2 ~ and two appropriately defined subsets S(~ ~) and E(~ c) 
made of nearest-neighbor steps of the random walks in ~ (including steps 
of the open walk x - ) u  if ~c is an x - - )u  polymer). Next, one finds that, 
given a random walk ~o and two subsets S and E of jumps, there exists at 
most one polymer ~ such that ~c = ~0, S(~2 ~) = S and E(~  ~) = E. Since 
there are no more than 2 t('~ • 2 t(~') = 4 ~('~ possible subsets S and E for a 
given ~o and since there are no more than/0(2v) t random walks of length l 
incompatible with ~2~), the number of polymers, ~2 ~, of length l incompatible 
with ~2~ is bounded by 

/04z(ec)(2v)t ~< /0(81,) l 

which is the required estimate. 
We now come to the proof of Property B. In order to prove the bound 

on z(~ ~) we use the estimates on/~(z,  d~), proved in Section 2. for the case 
of the Gaussian distribution (1.4). Indeed, given 6 > 0, there exists some 
finite constant E~ such that, for ]El >/ E 8 we have [see (2.15)] 

IIr(z, dX)[ ~ (2u + 6) - r  (3.29) 

On the other hand, for the case of high disorder 0 < y << 1, we have from 
(2.133 

[I~(z,d~) <~ c o n s t ( ~ )  r (3.30) 

Certainly, for complex values of N near N = 0, the integral IN(Z, d~) is 
bounded from below by a constant, uniformly in N. The required estimate 
for z(~2 ~) follows from the relations (3.17) and (3.20), using (3.29) for large 
energies or (3.30) for the case of large disorder. As stated above, the 
convergence of the expansions (3.25) and (3.26) follows now from Proper- 
ties A and B. 



590 Constantinescu, Frohlich, and Spencer 

Finally, we wish to return to Eq. (1.8) and explain the connection of 
the replica method, as studied in this paper, with the N ~  0 limit of the 
O(N)-invariant g[~]4 model, with negative coupling constant g. 

The expression in the middle of Eq. (1.8) can be interpreted as the 
N ~ 0  limit of the g]q~l 4 model, with (complex) mass rn 2= - z  = - E -  i~/ 
and negative coupling constant g = - ( 8 y ) - t .  If we choose the energy E to 
be large and negative then the modulus of m 2 is large, and we can interpret 
the right-hand side of (1.8), before taking the N ~ 0  limit, as an analytic 
continuation of the glqJI 4 model from positive values of the coupling 
constant g = (8y)-1 to the negative axis of the complex g plane. In fact, 
using the cluster expansion, one can easily show that the correlation 
functions of the g]q~[4 model can be analytically continued in the complex g 
plane to the second Riemann sheet, up to a phase 3~r/2 - e, with e small. 

4. CONJECTURES AND OPEN PROBLEMS 

4.1. On the Critical Exponent v of the Localization Length 

In this section d denotes the number of dimensions, whereas v is 
reserved for the critical exponent of the localization length to be defined 
below. 

As is quite well known, one expects that, in three or more dimensions, 
the properties of the dynamics determined by a random Schr6dinger 
operator, H v (as def ined in Section 1), are described by the following 
diagram: 

\ 
\ 

,,, > o 

Emin 

l F dX(V) ]-1/2 6 ~ sup - -  disorder [ v dV ] / /  

localized states, 
8c 

energy E 
Emax 0 4d 

J 

spec(- A) 
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Here Emi n ~ Emin(~ ) = min{ V: V E suppdX(V)}, Ema x ~ Emax(6 ) = 4d + 
max{V: V ~ suppdX(V)}, and m -  m(E, 8 ) -  ~(E, 8) -I  is the inverse lo- 
calization length. (1-4~ For fixed disorder, 8, the mobility edges, E c and ~ ,  
are the roots of the equation 6c(E ) = 8. 

Let E i < Ec be an eigenvalue for Hv, and let ~t(x) be the correspond- 
ing eigenvector. (The case E~ > E~ is similar and will not be discussed 
separately. Dense point spectrum near the band tails has been recently 
proven to exist in Ref. 4 for a fairly large class of distributions dX.) The 
function ~b i(x) has exponential decay, 

[~bi(x)[ < conste -mlxl, with 
(4.1) 

m ~ lim - rLr lnlg,;(x)[ > 0 
1 

Ixl-~ Ixl 

It is expected that m = rn(E~,8), where the function re(E,8) is the expo- 
nential decay rate of the Green's function, i.e., of (X[Rw(E + iw)[yS, as 
Ix - y[ ~ m, 77 ~ 0, which we define in this paper as the localization length; 
see Ref. 4. The Green's function (x lRv(z)]y) ,  x, y in 7/d, z ~ C, is defined 
to be the xy matrix element of the resolvent (H v - z ) - l .  

We conjecture that 

m(E,8)~cons t (E~ - E)  1/2, as E.'~E~ (4.2) 

if the dimension d of the lattice is sufficiently large and 8 < 8~. Scaling 
theories of localization predict that, for d > 2 and 8 < 8~, 

m(E,  8 ) ~c ons t ( E  c - E)  v, with ~, ~> 1/2 (4.3) 

The value d] ~ of the dimension with the property that v = 1/2, for 
d > d~ ~ is called the upper critical dimension. 

In N-body quantum mechanics, bound state wave functions below a 
threshold, E~, have exponential decay, with a decay rate, m(E),  behaving 
like 

m (E)  ~ const(E~ - E ) l/2 (4.4) 

(see Ref. 16). For a one-body system with a potential, V, of compact 
support, E~ = 0 and (4.4) follows directly from the equation 

qJ~(x) = [(A + E ~ ) - l V ~ ] ( x )  (4.5) 

and the well-known decay properties of the matrix elements of (2x + E~)- ~. 
For a random Schr6dinger operator, Hv, an equation of the form of (4.5) is 
expected to hold approximately in large dimension, with Ei ~ E~ - E~ and 
V--~ Neff, where Vef f is an average of V -  Ec over ever larger blocks, as the 
distance from the localization region of ~ increases. This would yield 
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~, = 1/2.  However ,  such arguments  do not  seem to determine dl~ . We  

expect that  E c ~ 0, as d - ~  oe. 

= E 

o~ : x---> y 

4.2. On the Value of d~ ~ 

In  order  to test "mean-f ie ld  behavior"  in the localization p rob lem one 
m a y  study the average of a p roduc t  of a Green ' s  funct ion with a r g u m e n t  
E + i T and  one with a rgument  E - iT. Using the r a n d o m  walk expansion 

one gets 

( ( x lRv (E  - i~)ly); ( z lRv(E + i ,) lw)) 

= f ( x tRv(E  - i71)ly)(zlRv(E + i~l)lw)dX(V) 

17 fdx (v )  1 
j ~ Z a - '  (2d  + V - E - hl)~('~ + V - E 4- i~)m(~') 

I-I fdx(v)  
j ~ z  d" (2d + V -  E -  i~/) "j('~ 

7 

f 1 / (4.6) 
• dX(V)  (2d + V -  E + i'l) '( '~ t 

Each term on the r ight-hand side of (4.6) is indexed by a pair  of walks, eo 
and ~0', which are required to intersect. A site at  which ~o and  e0' intersect 

corresponds to a singular integral 

r 1 (4.7) 
j d X ( V )  (2d  + V - E - i~l)=(2d + V - E + i~l) '~ 

with n and m positive and  v / >  0 small. The  small divisor p rob lem which 
appears  i s  similar to the one appear ing  in the s tudy of the dynamics  of a 
quan tum mechanica l  particle in an attractive &funct ion  potential ,  concen-  
trated along the walk ~0. Certainly,  this analogy is h a m p e r e d  by  the fact 
that  there are complex  phases  in each te rm in the expansion of 

( (x[Rv(E - i~)ly); ( z lRv(E + i~)lw)) 

which result in cancellat ions of singularities. But the interact ion between 
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the two walks in (4.6) is strictly local (i.e., nonzero contributions only result 
from walks o~ and oY which intersect each other), just as in the dynamics of 
the quantum mechanical particle with a 8-function potential concentrated 
along a walk o~. Assuming that the walk t~ is a simple random walk, we 
show below that the critical dimension of this quantum mechanical prob- 
lem is d~ = 6. This leads us to argue that the upper critical dimension of the 
localization problem lies between 4 and 6. Indeed, the local interaction 
between the two walks in (4.6) contains, as we have seen above, complex 
phases, so that, on the basis of our analogy with the dynamics of a particle 
in a 8-function potential concentrated along a simple random walk (or a 
Brownian path), the critical dimension of the localization problem is 
expected to lie somewhere between the critical dimension of that quantum 
mechanical problem with attractive and the same problem with repulsive 
8-function interaction. The critical dimension of the problem with repulsive 
8-function potential is well known to be d~ = 4. (~7~ Hence we expect that 

4 < d l~ < 6 (4.8) 

where d l~ is the (upper) critical dimension of the localization problem. 
For the convenience of the reader we give a simple argument for the 

claim d c = 6 in the case of the Schrtdinger equation with attractive 8- 
function potential concentrated on a Brownian path which underlies (4.8). 
We emphasize, however, that this result has actually a mathematically 
rigorous proof (see Ref. 18). We thank B. Simon for providing us with a 
different proof). In order to understand this result, we use the fact that a 
Brownian path has Hausdorff dimension two, with probability 1, and 
consider the Schr6dinger operator - A  + V, where V is a 8 function 
concentrated on a two-dimensional surface E, i.e., 

V(x)  = - f S(x - y)p(y)d2y,  x ~ Ra (4.9) 

where O is a nonnegative weight function concentrated on E, and the minus 
sign on the right-hand side of (4.9) accounts for the attractive character of 
the potential V(x). 

We should like to know, under which condition 

- A + V(x)  = - A, as self-adjoint operators (4.10) 
i.e., we want to calculate the dimension dc such that for d >/d  c, C f (Ra \Y)  
is a core for - i i .  Because - A  + 1 is an invertible operator with bounded 
inverse, this will be so iff the set 

{ ( - h  + 1 ) f l f  ~ C0~(ad\X)} (4.11) 

is dense in L2(l~d). 
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Suppose that the contrary is true; then there is an element g 4= 0 of 
L2(R d) such that 

( ( - A  + 1)f, g) = 0 for all f E Co~(ad\Z) 

This implies that (f, ( - A  + 1)g) = 0 for all f E Co~(Rd\Y.), with ( - ~  + 1)g 
interpreted as a tempered distribution. This equation implies, again in the 
sense of distribution theory, that supp ( -A  + 1)g C E. We may assume now 
that the set E is the coordinate plane (x v x2) such that there is a distribu- 
tion h(xl,x2) with 

[ ( - A  + 1)g](x) = h ( x , x ~ ) 8 ( ~ ) . . .  8(x~) 

where 8(xi), i = 3 . . . . .  d is the 8 function. Then 

g(x) = f ( - A  + 1) - l (x  1 . . . . .  Xd; Yl  . . . . .  . , V d ) h ( y l ,  Y2) 

• 8 ( y~ ) . . .  ~(y~,)ay,. . .  ay~ 

= ( ( - / ,  + 1)- ~(x, - y ~ , ~  - y ~ , ~  . . . . .  Xd)h(yl, Y2) dyl dy2 J 

(4.12) 

By Fourier transformation 

11 g[[2 2 = f ll~(kl, k2)[2 l dkldk 2 da-2kj_ (4.13) 
(k,) 2 + (~2) ~ + k~ + 1 

where /~ denotes the Fourier transform of h. Thus Ib gll~ < oo, i.e., g E 
L2(Rd), iff d - 2 < 4. This means that, in dimensions larger than or equal to 
6, C~(Ra\E) is a core for - A ;  hence - A +  V = - A ,  as self-adjoint 
operators. This argument is fairly convincing and shows that the quantum 
mechanical problem of a particle moving in a 8-function potential, concen- 
trated on a typical Brownian path, has critical dimension 6; but see Ref. 18 
for a rigorous result from which our claim follows. 

We wish to remark that the heretofore known properties of Wegner's 
nonlinear o models for the description of the localization transition under 
renormalization are consistent with the conjecture that, for d < d~ ~ 

= 1 / ( a -  2) 

If true this equation, together with the previously motivated conjecture that 
~dassical = 1/2, would imply that 

d~ ~ = 4 

and that t, = 1, in three dimensions. For a closely related discussion which 
motivated this comment see Ref. 19. 
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To settle these issues the dimension dependence of the infrared proper- 
ties of Wegner's model should be discussed more carefully. 

Finally, we remark that the transport properties in Lloyd's model (2~ 
(dX = Lorentzian)  can presumably be studied with the help of a 
g(lg'L 1210 1 theory, 0i = (Oi L . . . . .  0in), with complex mass and g < 0, in a 
n-~ 0 limit. This might also be useful as a tool to make the arguments 
outlined above more compelling and to determine d l~ 

NOTE ADDED IN PROOF 

We wish to mention an alternative proof of Theorem 2.3. 

Theorem. If 

f ei~V d)t(V) < Ce -alst, with 2vC < a, 

then p(E) is real-analytic in E. 
To prove this result, one expands 

f(s)-/dX(V)(xlei~"~lx)= f e "E ao(E) 

in the off-diagonal part of H v and exploits the fact that 

/dX(V)j~Meis;v(J) < CIMle-aZJE-I'~l 

to derive the estimate 

sZ If(s)[ ~< e -all  ~ cn+l(2v)  n n! 
n = 0  

= C e x p [ -  [sl(a - 2 e C ) ]  

from which our claim follows. 
This form of Theorem 2.3 was kindly proposed to us and proven by 

B. Simon. S. A. Molchanov has earlier used closely related methods to 
prove similar results. In an earlier draft of this paper we have used very 
similar, but slightly more clumsy, methods with similar conclusions. 
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